Making Faces: Conditional generation of faces using GANs via Keras+Tensorflow

SOPHIE SEARCY

Who am I?

Who am I?

- Sophie Searcy
- Curriculum development lead and Data Science Instructor at Metis
- Deep Learning and Data Science Ethics
- Write and lead free workshops with t4tech

5 6 7 8 9 10 11 12 13 14 15 16	Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum Count Confidence Level(95.0%)	180921.196 2079.10532 163000 140000 79442.5029 631111264 6.53628185 1.88287576 720100 34900 755000 264144946 1460 4078.35485	
		4070 33485	

Signposting

Who is this for

Someone who

- Understands and can explain the fundamentals of modern Deep Learning (there will be a review)
 - BackProp
 - Stochastic Gradient Descent
 - Common loss and activation functions
- Has built models using a recent Deep Learning package (PyTorch, Theano, Keras, etc.)

What we'll cover

Students should be able to:

- Understand and explain the important components of Generative Adversarial Networks
- Use provided boilerplate code and adapt it for new purposes
- State of The Art techniques in GANs:
 - Students will be exposed to a few important, recent developments.
 - Students will have the building blocks needed to independently explore new techniques.

Deep Learning Review

Essential parts: Differentiable functions

- $\blacktriangleright h_0 = f(W_0^T x + b_0)$
- $h_1 = f(W_1^T h_0 + b_1)$
- ...
- $\flat \quad y = f(W_n^T h_n + b_n)$
- \blacktriangleright DL models use these functions to process data in steps from input \rightarrow output
 - Traditional application:
 - \blacktriangleright Tabular data \rightarrow Regression/Classification
 - New (ish) applications
 - ▶ Image \rightarrow Text
 - ▶ Image → Image

Essential parts: Stochastic Gradient Descent + BackProp

Gradient Descent

- Finds adjustment to function parameters that minimizes the loss function
- **Back Propagation**
- Chain rule of calculus in algorithm form.
- Applies gradient descent over many layers of a network.

Figure 2.12 Gradient descent down a 2D loss surface (two learnable parameters)

GAN Overview

Convolutional Classifiers

- Convolutions learn feature maps
- Use sampling/pooling to summarize over height and width of image
- Output is some classification vector, e.g. probabilities

- Convolutional filiters
- $\blacktriangleright Pixels \rightarrow subparts \rightarrow parts \rightarrow whole$

Convolutional filiters

- $\blacktriangleright Pixels \rightarrow subparts \rightarrow parts \rightarrow whole$
- Visualize by finding input that maximizes activity at layer

Convolutional Generation

- Convolutions learn feature maps
- Upsampling/DeConvolution progressively grow image

Radford et al 2015

GAN Architecture

Goodfellow 2016

Generator task

A single CIFAR frog

Generator task

First 100 CIFAR frogs

Generator task

The generator learns the *distribution* of the training data.

Distribution Learning

Generator learns distribution of training data

 Meaningful understanding of that training data

Advanced GAN Topics

Lipschitz Continuity

Problem: in many cases, the discriminator can be essentially impossible for the generator to beat.

 \blacktriangleright Impossible to win \rightarrow zero gradient \rightarrow no learning

Lipschitz constant: Maximum rate of change of a function

Spectral Normalization (Miyato et al 2018) constrains the Lipshitz constant of the discriminator, ensuring stable training of generator.

Multilabel Conditional GAN

Classifier + GAN

- Classes provide additional signal
 - both generator and discriminator learn data distribution more quickly
 - Significantly quicker learning (wall clock)
- Allows direct manipulation of class feature in generator

VAC GAN

(a) The ACGAN scheme.

(b) The presented scheme (VAC+GAN)

Bazrafkan 2018

VAC GAN

VAC GAN

- Good: Versatile classification with GAN
- Bad: Requires a 3rd model
- Today's demo: VAC-GAN variant that combines Discriminator and Classifier

(a) The ACGAN scheme.

(b) The presented scheme (VAC+GAN)

Bazrafkan 2018

