Making Faces:
Conditional generation
of faces using GANSs
via Keras+Tensorflow
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Signposting



Who Is this for

Someone who

Understands and can explain the fundamentals of modern Deep Learning
(there will be a review)

BackProp
Stochastic Gradient Descent

Common loss and activation functions

Has built models using a recent Deep Learning package (PyTorch, Theano,
Keras, etc.)



What we'll cover

Students should be able to:

Understand and explain the important components of Generative
Adversarial Networks

Use provided boilerplate code and adapt it for new purposes

State of The Art techniques in GANS:
Students will be exposed to a few important, recent developments.

Students will have the building blocks needed to independently explore new
techniques.



Deep Learning Review



Essential parts: Ditfferentiable functions

ho = f(Wg x + bg)
hy = f(W{ ho + by)

y = f(WnThn + by)
DL models use these functions to process data in steps from input — output
Traditional application:
Tabular data — Regression/Classification
New (ish) applications
Image — Text

Image — Image



Essenftial parts: Stochastic Gradient

Descent + BackProp

Gradient Descent ‘

» Finds adjustment to function
parameters that minimizes the loss
function

Starting point

Back Propagation

» Chain rule of calculus in algorithm
form.

» Applies gradient descent over
many layers of a network.

Final point
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Figure 2.12 Gradient descent
down a 2D loss surface (two
learnable parameters)

Chollet 2018



GAN Overview



Convolutional Classifiers

» Convolutions learn feature maps
» Use sampling/pooling to summarize over height and width of image
» Output is some classification vector, e.g. probabilities

Feature maps

Convolutions Subsampling Convolutions ~ Subsampling  Fully connected source


https://web.archive.org/web/20181019142059/https://commons.wikimedia.org/wiki/File:Typical_cnn.png
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» Convolutional filiters @ Y {))

» Pixels — subparts — parts — whole

Chollet 2018



» Convolutional filiters
» Pixels — subparts — parts — whole
» Visudlize by finding input that maximizes activity at layer
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Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c) Objects (layers mixed4d & mixed4e)

Olah 2017



Convolutional Generation

» Convolutions learn feature maps

» Upsampling/DeConvolution progressively grow image

512
|

I 1
8
g :_:‘_

8 N
Stride 2 16

I
)

32 Stride 2

CONV 2

CONV 4 .
G(2)

Radford ef al 2015



GAN Architecture
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Generator task

A single CIFAR frog




Generator task

First 100 CIFAR frogs




Generator task

The generator learns the
distribution of the training data.




Distribution Learning

Generator learns distribution
of tfraining data

» Meaningful
understanding of that
training data

man man woman
with glasses without glasses without glasses

woman with glasses

Radford et al 2015



Advanced GAN Topics



Lipschitz Confinuity

Problem: in many cases, the discriminator can be
essentially impossible for the generator to beat.

Impossible 1o win — zero gradient — no learning

Lipschitz constant: Maximum rate of change of a
function

Spectral Normalization (Miyato et al 2018) constrains
the Lipshitz constant of the discriminator, ensuring
stable training of generator.


https://web.archive.org/web/20181019145936/https://commons.wikimedia.org/wiki/File:Lipschitz_continuity.png

Multilabel Conditional GAN



Classifier + GAN

Classes provide additional signal
both generator and discriminator learn data distribution more quickly

Significantly quicker learning (wall clock)

Allows direct manipulation of class feature in generator



VAC GAN
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Bazrafkan 2018



VAC GAN

VAC GAN

Good: Versatile classification with GAN

Bad: Requires a 319 model

Today’'s demo: VAC-GAN variant that combines Discriminator and Classifier
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