

PERCEPTRON
AUTICAL LABORATORY, Inc

Making Faces: Conditional generation of faces using GANs via Keras+Tensorflow

SOPHIE SEARCY

Who am 1?

MARK I PERCEPTRON AUTICAL LABORATORY, I

- Sophie Searcy
- Curriculum development lead and Data Science Instructor at <u>Metis</u>
- Background: robotics, computational psychology
- Current focus: Deep Learning and Data Science Ethics
- Write and lead free workshops with t4tech

Who am 1?

PERCEPTRON AUTICAL LABORATORY, IN

- ► Metis <u>thisismetis.com</u>
- Only accredited <u>Data Science Bootcamp</u>
 - Students changing careers into Data Science
 - Cohorts in Seattle, Chicago, San Francisco, and New York City
- Corporate Training
 - Skill up your current team
 - Data Literacy, Big Data, Advanced Deep Learning topics
 - In-house Bootcamp-style training.

Who is this for

PERCEPTRON AUTICAL LABORATORY, IN

Someone who

- Understands and can explain the fundamentals of modern Deep Learning (there will be a review)
 - BackProp
 - Stochastic Gradient Descent
 - Common loss and activation functions
- Has built models using a recent Deep Learning package (PyTorch, Theano, Keras, etc.)

What we'll cover

PERCEPTRON AUTICAL LABORATORY, Inc

Students should be able to:

- Understand and explain the important components of Generative Adversarial Networks
- Use provided boilerplate code and adapt it for new purposes
- State of The Art techniques in GANs:
 - Students will be exposed to a few important, recent developments.
 - Students will have the building blocks needed to independently explore new techniques.

(rough) Agenda

PERCEPTRON AUTICAL LABORATORY, Inc

- ► Hour 1: Slides
- ► Hour 2: Neural Net Theory notebook
- ► Hour 3: GAN demo
 - Less instructional
- Workshop designed to be run on Google Colab for free.
 - All code distributed through GitHub and Colab.
 - All results acquired from Colab

What makes deep Learning special?

PERCEPTRON
ALL AER
BUFFALO
BUF

Typical Machine Learning

Data

Transformations

Feature engineering, feature extraction

Tuned by hand, parameter search

Model

Linear model, SVM, RF, etc.

Optimized wrt objective function

Output

What makes deep Learning special?

PERCEPTRON
AUTICAL LABORATORY, INC.
BUFFALO
BUFFALO

Deep Learning

Data

Transformations

Model

Deep Learning model

Optimized wrt objective function

Output

Essential parts: Differentiable functions

- $h_0 = f(W_0^T x + b_0)$
- $h_1 = f(W_1^T h_0 + b_1)$
- **...**
- \blacktriangleright DL models use these functions to process data in steps from input \rightarrow output
 - ▶ Traditional application:
 - ► Tabular data → Regression/Classification
 - New (ish) applications
 - ► Image → Text
 - ► Image → Image

Essential parts: Stochastic Gradient Descent + BackProp

RON TORY, Inc.

Gradient Descent

Finds adjustment to function parameters that minimizes the loss function

Back Propagation

- Chain rule of calculus in algorithm form.
- Applies gradient descent over many layers of a network.

Figure 2.12 Gradient descent down a 2D loss surface (two learnable parameters)

Deep Learning approach

- Traditional Machine Learning
 - A lot of time spent engineering your data/features to find the best ones for a model to learn.
 - Train a shallow model to make predictions based on features.
- Deep Learning
 - ▶ Time is spent on finding DL architecture that is able to learn the feature transformations it needs.
 - More time can be spent on improving/expanding dataset.
 - Train a model to find the best parameters for the entire pipeline from data -> prediction.

Convolutional Classifiers

- Convolutions learn feature maps
- Use sampling/pooling to summarize over height and width of image
- Output is some classification vector, e.g. probabilities

Convolutional Generation

- Convolutions learn feature maps
- Upsampling/DeConvolution progressively grow image

GAN Architecture

GAN Architecture

GAN Architecture

PERCEPTRON AUTICAL LABORATORY, Inc

- Given random vector z
- Attempts to generate an image that fools D(·)

Imagine you are the generator

- CIFAR image data (32x32)
- Generate a frog that will fool the discriminator

You are the generator

- Imagine you can see the training data.
- You can learn as much as you want from the training data.
- You have to devise a strategy to trick the Discriminator.
- What is your strategy for fooling the discriminator?
 - i.e. what if you had to say/write pseudocode for the best strategy in a minute or so?

What is your strategy?

- Memorize training images?
 - You have ~ 1 million parameters but the training data has ~ 100 million pixels

What is your strategy?

- Memorize training images?
 - You have ~ 1 million
 parameters but the training
 data has ~ 100 million pixels
- Instead the generator learns the distribution of the training data.
 - Attempts to generate an example from that distribution

Distribution Learning

PERCEPTRON AUTICAL LABORATORY, Inc.

Generator learns distribution of training data

Meaningful understanding of that training data

man with glasses

man without glasses

woman without glasses

woman with glasses

- MARK I
 CORNELL AER
 BUFFALO
- PERCEPTRON AUTICAL LABORATORY Inc.

- Problem: in many cases, the discriminator can be essentially impossible for the generator to beat.
 - ► Impossible to win → zero gradient → no learning

Lipschitz constant: Maximum rate of change of a function

Spectral Normalization (Miyato et al 2018) constrains the Lipshitz constant of the discriminator, ensuring stable training of generator.

Classifier + GAN

- Classes provide additional signal
 - both generator and discriminator learn data distribution more quickly
 - Significantly quicker learning (wall clock)
- Allows direct manipulation of class feature in generator

All materials at soph.info/odsc2019

Bazra

VAC GAN

- VAC GAN
 - ► Good: Versatile classification with GAN
 - ▶ Bad: Requires a 3rd model
- Today's demo: VAC-GAN variant that combines Discriminator and Classifier

Results All materials at soph.

PERCEPTRON AUTICAL LABORATORY Inc.

